[KS01]Aninash C. Kak and Malcom G. Slaney. Principles of Computerized Tomographic Imaging. SIAM, Philadelphia, USA, 2001. ISBN 089871494X. URL:, doi:10.1137/1.9780898719277.
[MSCG15]Paul Müller, Mirjam Schürmann, Chii J Chan, and Jochen Guck. Single-cell diffraction tomography with optofluidic rotation about a tilted axis. Proc. SPIE, 9548:95480U–95480U–5, 2015. doi:10.1117/12.2191501.
[MSG15a]Paul Müller, Mirjam Schürmann, and Jochen Guck. ODTbrain: a Python library for full-view, dense diffraction tomography. BMC Bioinformatics, 16(1):1–9, 2015. doi:10.1186/s12859-015-0764-0.
[MSG15b]Paul Müller, Mirjam Schürmann, and Jochen Guck. The Theory of Diffraction Tomography. ArXiv e-prints, 2015. arXiv:1507.00466v2.
[SCG+17]M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller. Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography. Journal of Biophotonics, 11(3):e201700145, aug 2017. doi:10.1002/jbio.201700145.
[TPM81]K C Tam and V Perez-Mendez. Tomographical imaging with limited-angle input. J. Opt. Soc. Am., 71(5):582–592, 1981. doi:10.1364/JOSA.71.000582.
[VDYH09]Stanislas Vertu, Jean-Jacques Delaunay, Ichiro Yamada, and Olivier Haeberlé. Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space. Central European Journal of Physics, 7(1):22–31, 2009. doi:10.2478/s11534-008-0154-6.
[Wol69]Emil Wolf. Three-dimensional structure determination of semi-transparent objects from holographic data. Optics Communications, 1(4):153–156, sep 1969. doi:10.1016/0030-4018(69)90052-2.